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SOLUTION OF THE INTEGRAL EQUATIONS IN THE
THREE-DIMENSIONAL NONSYMMETRICAL CONTACT

PROBLEMS WITH THE FRICTION TAKEN INTO ACCOUNT

GANNA SHYSHKANOVA1

Abstract. We develop a numerical-analytic method of solution of the integral equations with

weak singularity for three-dimensional contact problems with complex multiply-connected do-

mains. The proposed method is based on the potential expansion, a regularization of the first

kind Fredholm equation that leads to the second kind equation and smoothing of the kernels.

Simple layer potential expansion is developed when the density has no circular symmetry. This

gives possibility to solve contact interaction problems for asymmetrical bodies and taking into

account the friction and the roughness.
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1. Introduction

Computation of the potential type integrals arises in many theoretical and practical problems.
Thus, stressed bodies weakened by flat cracks under a normal tear are characterized by the
following integral-differential equation

p(ρ0, θ0) = ∆
∫∫

S

ω(ρ, θ)
r

ds, r2 = ρ2
0 + ρ2 − 2ρ0ρ cos(θ0 − θ), (ρ0, θ0) ∈ s, ds = ρdρdθ.

Signal decoding is realized by a solution of a potential problem in computer tomography and
seismology. Mechanical dynamical systems have many parts with contact interaction. Boundary
conditions on the surfaces of deformable bodies can be formulated in a way adequate to the
reality only as a result of the contact problem solution [1]. Solutions of the contact problem get
particular relevance in the development of tribology that studies contact of roughness surfaces
taking into account losses on friction and wear, contact rigidity of movable and unmovable
joints and cracks, etc. [2, 3, 8]. The main integral equation of the three-dimensional contact
interaction problems serves to determine the vertical displacements δ and the normal pressure
p(x, y) under the punch neglecting the vertical displacement of the micro asperity resulting from
the tangential force. The equation contains integrals with weak singularity of the simple layer
potential type, in the general case taken over an unknown contact domain s dependent on the
friction coefficient [2]

ϕ0(p(ρ0, θ0)) +
∫∫

S

η p(ρ, θ)
r

ds +
∫∫

S

cos r̂x

r
ψ0(p(ρ, θ)) ds = g(ρ0, θ0)), (1)
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where g(ρ, θ) depends on the punch contact surface, the indentation value and the angles of
rotation; η is a physical constant characterizing the material of the contacted bodies. The
function ϕ0(p(ρ, θ)) characterizes the law of local deformation changes caused by the roughness
of the surface of the elastic half-space (without the roughness ϕ0(p(ρ, θ)) = 0). The function
ψ0(p(ρ, θ)) shows a dependence of the friction force and the normal pressure, taking into ac-
count the adhesion. For a contact interaction without the friction taken into account, one has
ψ0(p(ρ, θ)) = 0.

An analysis of recent papers shows that earlier there were not found general solutions of the
three dimensional contact problems for multiply-connected non-axe-symmetric domains taking
into account the friction. This work proposes a solution of the problem using a simple layer
potential expansion. The basis for such approach had been developed in the papers [5, 6, 8].

2. Simple layer potential expansion for an asymmetric density distribution

Let us consider a simple layer potential distributed on a flat annular ring when the density of
the layer depends on the distance ρ between the point and the center of the ring Ω. Using the
expansion of the generating function Pk(z) into a series in the Legendre polynomials

1√
1 + t2 − 2t cos τ

=
∞∑

k=0

tkPk(cos τ), t < 1,

one gets the following expression for the simple layer potential
∫∫

Ω

σ0(ρ)
r

dΩ = 2π
∞∑

n=0

(
(2n− 1)!!

(2n)!!

)2

×

×
[∫ ρ0

a
σ0(ρ)

(
ρ

ρ0

)2n+1

dρ +
∫ b

ρ0

σ0(ρ)
(

ρ0

ρ

)2n

dρ

]
. (2)

The expression (2) coincides with the one obtained in [4].
Further on we consider the cases when the density of simple layer distribution is not axe-

symmetric, but can be represented in the form

σ(ρ, θ) =
∞∑

n=0

σn(ρ) cos(nθ) + σ̄n(ρ) sin(nθ).

In the course of computation of the integral
∫∫

Ω σ2(ρ) cos 2θ/r dΩ with the help of the expan-
sion of the generating function into a series in the Legendre polynomials one comes to the desire
to compute the integral

∫ 2π
0 cos 2θ Pn(cos(θ − θ0))dθ.

One uses the expansion of the trigonometric functions into series in the Legendre polynomials,
for example

sin τ = π
4

[
P0(cos τ)−∑∞

k=0
(2k+1)!!(2k−1)!!(4k+5)

22k+2(k+2)!(k+1)!
P2k+2(cos τ)

]

and therefore
∫∫

Ω
σ2(ρ) cos 2θ/r dΩ =

∫ 2π

0
cos 2(τ + θ0)

∞∑

n=0

Pn(cos τ)Un(ρ) dτ,

where

Un(ρ) =
∫ ρ0

a
σ2(ρ)

(
ρ

ρ0

)n+1

dρ +
∫ b

ρ0

σ2(ρ)
(

ρ0

ρ

)n

dρ, θ − θ0 = τ.
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The basis of the induction uses the Legendre polynomials properties:

A(1)=
∫∫

Ω
σ2(ρ) cos 2θ/r dΩ=2π cos 2θ0

∞∑

n=0

[
(2n− 1)!!

(2n)!!

]2 2n(2n + 1) · U2n(ρ)
(2n + 2)(2n− 1)

.

The second induction step is obtained in a similar way:

A(2) =
∫∫

Ω
σ2(ρ) cos 4θ/r dΩ = 2π cos 4θ0

∞∑

n=0

[
(2n− 1)!!

(2n)!!

]2

×

× 2n(2n + 1)(2n− 2)(2n + 3)
(2n− 3)(2n− 1)(2n + 2)(2n + 4)

U2n(ρ).

Let us consider the induction parameter which equals to an even integer number m. Then it is
possible to deduce the following inductive assumption

A(m) =
∫∫

Ω
σ2(ρ) cos 2mθ/r dΩ = 2π cos 2mθ0

∞∑

n=0

[
(2n− 1)!!

(2n)!!

]2

Cm,n U2n(ρ), (3)

where

Cm,n =
m∏

k=1

[
(2n− 2k + 2)(2n + 2k − 1)

(2n + 2k)(2n− 2k + 1)

]
.

An equivalent form of the mathematical induction is used to prove this inductive assumption.
Transformations similar to those made for A(1) and A(2) lead to the expression (3) for A(m).
The expression (3) can be used when the right hand side of the equation for f(ρ, θ) has a form
of a series in sines and cosines of even multiples of θ. The convergence is proved and it is also
done on the boundary. Corresponding expressions are also found when p(ρ, θ) is given as a series
in sines and cosines of odd multiples of θ [7].

3. Solution method of the problem on contact of a doubly-connected punch

with a rough elastic half-space

A rigid cylindrical doubly-connected punch is indented by the vertical force Q into a rough
elastic half-space. The domain s is the projection of the punch points contacting with the elastic
half-space to the plane z = 0. There is no loading out of the contact domain on the elastic half
space. The boundary conditions are p(ρ, θ) = 0, (ρ, θ) 6∈ s. One wants to find a solution of the
system of equilibrium equations and of the main integral equation (1) which has the form [2]:

Bp(ρ0, θ0) +
1− ν2

πE
·
∫∫

S

p(ρ, θ)
r

ds = g(ρ0, θ0), (4)

where B is the factor characterizing deformation properties of roughness of the half-space surface,
ν is the Poisson coefficient, E is the modulus of elasticity,

s = {(ρ, θ) : a · (1 + f(ε, θ)) ≤ ρ ≤ b · (1 + f(ε, θ)) , 0 ≤ θ ≤ 2π} ,

f(ε, θ) is a continuously differentiable function which has a representation of the form

f(ε, θ) =
∞∑

i=1

εifi(θ). (5)

Assuming that the required distribution of the normal pressure p(ρ, θ) depends on ε, we
suppose that the function p(ρ, θ) can be represented as a power series in the small parameter ε:

p(ρ, θ) =
∞∑

k=0

εkpk(ρ, θ). (6)
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To obtain the expansion of the potential from the equation (4) in a series in ε, one uses the
following mapping of the domain s onto the circular ring Ω [5, 6, 7]:

ρ = R

(
1 +

∞∑

i=1

fi(ϕ)εi

)
, θ = ϕ , (7)

Ω = {(R, ϕ) : a ≤ R ≤ b, 0 ≤ ϕ ≤ 2π} , (ρ0, θ0) → (R0, ϕ0) ∈ Ω.

In the new variables the potential density (6) can be written with the use of the transformation
(7):

p(ρ(R, ϕ, ε), ϕ) =
∞∑

i=0

Pi(R, ϕ)εi. (8)

Taking into account that R = ρ when ε = 0, one gets the following expressions for the functions
Pi(R, ϕ) and represents here for i = 0, 1, 2:

P0(R, ϕ) = p0(R,ϕ), P1(R,ϕ) = p1(R, ϕ) + p′0(R, ϕ) R f1(ϕ), (9)

P2(R, ϕ) = p2(R, ϕ) + p′1(R,ϕ) R f1(ϕ) + p′0(R, ϕ) R f2(ϕ) + 1/2 · p′′0(R,ϕ) R2 f2
1 (ϕ).

Let us transform the integral from the equation (4) into the new variables. This is possible
under the condition that the mapping (7) of the domain s onto the circular ring Ω is one-to-one
and continuously differentiable. The ratio of the image measure with the original one equals the
Jacobian of the transformation. The singular point is cut out by the circle of a small radius α.
Now the domain s with the cut out point maps to the domain Ω−α with the boundary dependent
on ε. Since the integrand and the equations of the domain contour depend on ε, we differentiate
the equation taking into account dependence of the boundary equation on the parameter to
obtain an expansion of the integral with weak singularity. Assuming, that pi(ρ, θ) and fi(θ) are
continuously differentiable functions inside the domain s, after the limit transformation α −→ 0,
we obtain the simple layer potential expansion in the new variables [7]:

∫∫

S

p(ρ, θ)
r

ds =
∞∑

i=0

εi

[∫∫

Ω

Pi(R, ϕ)
r(R,R0)

dΩ + Hi(P0, P1, ..., Pi−1)
]

, (10)

where for i = 0, 1, 2 : H0 = 0, H1(P0) = D1(P0), H2(P0, P1) = D1(P1) + D2(P0),

D1(P0) =
∫∫

Ω

P0(R)
r(R,R0)

f1(ϕ)dΩ−R0
∂

∂R0

∫∫

Ω

P0(R)
r(R,R0)

[f1(ϕ)− f1(ϕ0)]dΩ,

D2(P0) =
∫∫

Ω

P0(R)
r(R,R0)

f2(ϕ)dΩ−R0
∂

∂R0

∫∫

Ω

P0(R)
r(R,R0)

[f2(ϕ)− f2(ϕ0)]dΩ +

+ R0
∂2

∂R2
0

∫∫

Ω

P0(R)
2r(R, R0)

[f1(ϕ)− f1(ϕ0)]2dΩ, (11)

r2(R, R0) = R2 + R2
0 − 2R ·R0 cos(ϕ− ϕ0); (R0, ϕ0) ∈ Ω,

Ω = {(R, ϕ) : a ≤ R ≤ b, 0 ≤ ϕ ≤ 2π} . The coefficients of different powers of ε in (10) depend
on the similar potentials distributed on the circular ring domain. Then, if the desired functions
are Lipschitzian with positive index Pi(ρ, θ) ∈ Lipα (α > 0), the integrals are differentiable
necessary number of times. The doubly-connected domain s is bounded by the lines Γ1, Γ2 with
the following equations

ρΓ1 = a (1 + f(ε, θ)) , ρΓ2 = b (1 + f(ε, θ)) , (12)

where one has the expression (5) for f(ε, θ).
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The right hand side part of the main integral equation of the problem (4) has the form [2]
g(ρ, θ) = δ + β1ρ cos θ − β2ρ sin θ + f0(ρ, θ). Here β1, β2 are the rotation vector projections, δ is
the value of the punch indentation; they are determined from the punch equilibrium equations.
f0(ρ, θ) is a function of the punch base surface, for the flat punch one has f0(ρ, θ) = 0 . It
is natural to assume that, unknown δ, β1, β2 depend on the parameter ε. This parameter
characterizes the equation of the boundaries of the contact domain s (12). So they can be
written as the power series in ε

δ =
∞∑

k=0

δkε
k; β1 =

∞∑

k=0

β1kε
k;β2 =

∞∑

k=0

β2kε
k; g(ρ, θ) =

∞∑

k=0

gk(ρ, θ) εk. (13)

The integrals in the equilibrium equations can be represented as power series in ε. We
transform the main integral equation (4) of the problem and the equilibrium equations into
similar recurrent systems to determine Pk(R, ϕ), δk, β1k, β2k , where the integrals are distributed
only on the circular ring. Let us present the recurrent system to determine P1(R, ϕ). After
application of the potential expansion at an inner point (10), the equation (4) is reduced to the
following system . One uses the potential expansion with the asymmetric density (3) in the
asymmetrical case.

BPk(R0, ϕ0) +
1− v2

πE

[∫∫

Ω

Pk(R,ϕ)
r(R, R0)

dΩ + Hk (P0, P1, ..., Pk−1)
]

= Gk(R0, ϕ0), (14)

where the functions Gk(R, ϕ) are defined by gk(R,ϕ) with dependencies similar to (9)
Hk(P0, P1, ..., Pk−1) using expressions (11), dΩ = RdRdϕ, k = 0, 1, .... We reduce the problem
for the domain close to the circular ring s bounded by (12) to a recurrent sequence of similar
problems for the domain Ω bounded by the circles R = a and R = b.

Let us consider the contact doubly-connected domain bounded by the Booth lemniscates,
which represent deformed ellipses. The equations of such boundaries in the polar coordinate
system are

ρ1 (θ) = a
(
1− ε2 sin2 θ

)1/2 ; ρ2 (θ) = b
(
1− ε2 sin2 θ

)1/2
, (15)

where ε is the eccentricity of the ellipse deformed into Booth lemniscates, ε2 = 1 − a2
1/a2 =

1 − b2
1/b2, a, b are focal parameters and a1, b1 are small semiaxes. The equation of the lines

bounding the contact domain (15) can be written in the form of expansions in the power series
(7), so the functions fi(ε, θ), i = 1, 2, in the expansion (5) have the form:

f1(θ) = 1/4 · (cos 2θ − 1) , f2(θ) = 1/64 · (− cos 4θ + 4 cos 2θ − 3) . (16)

The following system of two-dimensional integral equations is obtained as the first approxi-
mation of the equations (14) when k = 0, taking into account the equilibrium equations,

Bp0(ρ0, θ0) +
(1− ν2)
(πE)

·
∫∫

Ω

p0(ρ, θ)
r

dΩ = δ0. (17)

∫∫

Ω
p0(ρ, θ) dΩ = Q.

After introducing the notations [2, 8]:

BπE/
(
b · (1− ν2)

)
= B1;

(
1− ν2

)
/ (πE) · p0(ρ)/δ0 = ϕ(ρ), (18)

we transform the equation (17) to the one-dimensional integral equation

B1

2π
ϕ(ρ0) +

∫ b

a
K(ρ0, ρ) · ϕ(ρ)

dρ

b
=

1
2πb

, (19)
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where the kernel of the integral equation has the form:

K(ρ0, ρ) =





∑∞
n=1

(
(2n−1)!!
(2n)!!

)2 (
ρ
ρ0

)2n+1
, ρ < ρ0;

∑∞
n=1

(
(2n−1)!!
(2n)!!

)2 (
ρ0

ρ

)2n
, ρ > ρ0.

(20)

We represent the integral equation (19) in the equivalent form as in the paper [8]

B1

2π
ϕ(ρ0) +

∫ b

a
K(ρ0, ρ) · (ϕ(ρ)− ϕ(ρ0))

dρ

b
+ ϕ(ρ0)

∫ b

a
K(ρ0, ρ) · dρ

b
=

1
2πb

, (21)

where the integrand in the first integral is well defined, because the difference (ϕ(ρ) − ϕ(ρ0))
is equal to zero on the diagonal when ρ = ρ0. The computation of the integral

∫ b
a

K(ρ0,ρ)
b dρ is

made without the desired functions and can be represented in an explicit form:

∫ b

a
K(ρ0, ρ)

dρ

b
=

2
π

[
E

(ρ0

b

)
+

ρ0

b

((
1− a2

ρ2
0

)
·K

(
a

ρ0

)
− E

(
a

ρ0

))]
. (22)

Here K(z), E(z) are the elliptic integrals of the first and the second kind correspondingly.
If the equation (21) is multiplied by λ = 2π/B1, we obtain the standard form of the Fredholm

second kind equation with weak singularity. The Fredholm operator with weak singularity is
completely continuous, and therefore, the operator I + A has an inverse limited operator for
‖ A ‖≤ q < 1 (I is the unit operator). The estimates for the values of λ are known from the
Fredholm theory. Using the expressions for the kernel (20) and (22), they can be obtained as
λ < 1/(4bK(a/b)).

The solution of the problem is also important for smooth surfaces. In this case the main
equation (4) is of the first kind [7]. So, when B1 is close to zero, the approximate solution of
the first kind is obtained, which corresponds to the absence of the roughness B1 = 0 in this
problem.

Solution of the second kind Fredholm integral equations can be written as a series for the
resolvent. This series represents an expansion in power series in the parameter λ near the
point λ = 0, and therefore converges till the first singular point λ1 of this function, that is
the first eigenvalue of the kernel. Consequently, the series for the resolvent can not be used if
| λ |>| λ1 |, since it diverges there. It is difficult to use the series if | λ | is close to | λ1 |, since
then it converges slowly. N. Bogolyubov and N. Krylov recommended to apply the analytic
continuation. In this case, the simplest variant is to substitute it for B1/(2π) = 1 − α, where
0 < α < 1 . When α = 1, the equation of the second kind (17) is transformed into the equation
of the first kind [8]. Taking into account the substitution, the equation (17) has the following
form

(1− α)ϕ(ρ0) +
∫ b

a
K(ρ0, ρ) · (ϕ(ρ)− ϕ(ρ0))

dρ

b
+ ϕ(ρ0)

∫ b

a
K(ρ0, ρ) · dρ

b
=

1
2πb

. (23)

This equation can be solved by successive approximations when α < 1. The unknown con-
stant δ0 is determined from the equilibrium equations. When k = 1, taking into account the
equilibrium equations, we obtain the system of the two-dimensional integral equations at the
second approximation of the equations (14):

Bp1 (ρ0, θ0) +

(
1− ν2

)

πE
×

×
[∫∫

Ω

P1(ρ, θ)
r

dΩ +
(

1− ρ0
∂

∂ρ0

) ∫∫

Ω

(−P0(ρ)
4 · r +

P0(ρ)
4 · r cos 2θ

)
dΩ

]
= δ1. (24)
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∫∫

Ω
P1(ρ, θ) dΩ− 1/2

∫∫

Ω
P0(ρ, θ) dΩ = 0.

After transformation, the substitution P1(ρ, θ) = p10(ρ) + p12(ρ)cos(2θ) and taking into ac-
count the functions of Pk(ρ, θ) and pk(ρ, θ), the first equation of (24) is transformed into the
following two equations

Bp10(ρ0) +
(1− ν2)

πE
·
∫∫

Ω

p10(ρ, θ)
r

dΩ = δ1 +
1
4
δ0 − 1

4
BP0(ρ0), (25)

Bp12(ρ) cos 2θ0 +
(1− ν2)

πE
·
∫∫

Ω
p12(ρ, θ) cos 2θ/r dΩ =

=
1
4
ρ0B P ′

0(ρ) cos 2θ0 − (1− ν2)
πE

·
(

1− ρ0
∂

∂ρ0

)
·
∫∫

Ω

P0(ρ)
4 · r cos 2θ dΩ. (26)

On the base of the form of the equation (23), we find out

p10 = δ1/δ0 · p0(ρ) + 1/4p0(ρ) + p̃10(ρ).

After the substitution 1−ν2

πE
p̃10(ρ)

δ0
= ψ(ρ), B1

2π = 1− α, the following equation is obtained

(1− α) · ψ (ρ0) +
∫ b

a
K (ρ0, ρ) · (ψ (ρ)− ψ (ρ0)) /b · dρ =

= −0, 25 · ϕ (ρ0)− ψ (ρ0)
∫ b

a
K (ρ0, ρ) /b · dρ. (27)

The kernel of this equation has the same form as in the equation (23) and it is also solved
by the method of successive approximations. The indentation value δ1 is determined from
the second equation in the system (24). We make similar transformations, use the developed
computing methods of the simple layer potential with asymmetric density distribution of the
potential [7] and obtain that the integral equation (26) is transformed into

u (ρ0) = α u (ρ0) +
1
4

(1− α) · ϕ (ρ0)− 1
8πb

−
∫ b

a
K1 (ρ0, ρ) · (u (ρ)− u (ρ0))

dρ

b
−

− u (ρ0)
b

·
∫ b

a
K1((ρ0, ρ)) dρ− 1

4b
·
∫ b

a
K2 (ρ0, ρ) ϕ (ρ) · dρ, (28)

where

u(ρ) = p12(ρ) ·
(
1− ν2

)

δ0πE
, (29)

K1(ρ0, ρ) =





∑∞
n=1

(
(2n−1)!!
(2n)!!

)2 [
1 + 2

(2n+2)(2n−1)

] (
ρ
ρ0

)2n+1
, ρ < ρ0;

∑∞
n=1

(
(2n−1)!!
(2n)!!

)2 [
1 + 2

(2n+2)(2n−1)

] (
ρ0

ρ

)2n
, ρ > ρ0.

K2(ρ0, ρ) =





∑∞
n=1

(
(2n−1)!!
(2n)!!

)2
2

(2n−1)

(
ρ
ρ0

)2n+1
, ρ < ρ0;

∑∞
n=1

(
(2n−1)!!
(2n)!!

)2
2

(2n+2)

(
ρ0

ρ

)2n
, ρ > ρ0.

A similar transformation is done in the third approximation. As a result, we obtain the
solution of the problem of indentation into the rough elastic half-space of a flat punch with
the base in the form close to a circular ring bounded by lines with the equation of the Booth
lemniscates, taking into account the first three approximations.
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4. Solution method of the problem on contact of doubly-connected punch

taking into account the friction

A rigid punch is pressed by the vertical force Q into the elastic half-space. There is also the
moving force T applied on the height d from the punch base, which is balanced by the friction
force. Coulomb’s linear friction law [2] is considered here. Let us consider the moving force
which is directed parallel to the axis Ox. The main integral equation of the problem without
taking into account the roughness (1) is the first kind Fredholm equation [2]:

1− ν2

πE

∫∫

Ω

p(ρ, θ)
r

[
1 + ε1 cos

∧
r x

]
dΩ = δ, (30)

where ε1 = µ · (1− 2ν)/(2− 2ν), µ is the coefficient of friction. Let us assume that ε1 is a small
parameter as it is much smaller than 1 in the most cases.

Regularization of the equation (30) leads to the solution of the second kind equation, when
α < 1, P (ρ, θ) = 1−ν2

πE · p((ρ, θ), (23):

(1− α) · P (ρ, θ) +
∫∫

Ω

P

2πbr
·
[
1 + ε1

ρ0 cos θ0 − ρ cos θ

r

]
dS =

δ

2πb
, (31)

The equation (31) can be considered as the basic integral equation of the problem of the
punch indentation into the elastic half-space with the roughness and the friction. In this case
we neglect the vertical displacement of micro asperities due to the action of the tangent force.
To compute the integrals in the equation (31) we use their expansions (3), (10) [7, 8].

∫∫

Ω

cos rx

r
P (ρ, θ)dΩ = π

∞∑

n=1

∫ ρ0

a
[an (ρ) cos (n + 1) θ0 + bn (ρ) sin (n + 1) θ0] ·

(
ρ

ρ0

)n+1

dρ−

−π
∞∑

n=1

∫ b

ρ0

[an (ρ) cos (n− 1) θ0 + bn (ρ) sin (n− 1) θ0]·
(

ρ0

ρ

)n−1

dρ+π cos θ0

∫ ρ0

a
an(ρ)·

(
ρ

ρ0

)
dρ,

where P (ρ, θ) = a0 (ρ) /2 +
∑∞

n=1 an (ρ) cos nθ + bn (ρ) sin θ.
The zero approximation p0(ρ, θ) is the solution of the integral equation for ε1 = 0. We consider

the solution P (ρ, θ) of the equation (30), close to p0(ρ, θ) when the parameter ε1 is small. In
this case, let us represent the desired function and the indentation value as the following series

P (ρ, θ) =
∞∑

i=0

εi
1pi (ρ, θ) ; δ =

∞∑

i=0

εi
1δi. (32)

The equations to determine the expansion coefficients P (ρ, θ) in power series in ε1 for three
approximations are

(1− α) p0 (ρ, θ) +
∫∫

Ω

p0 (ρ, θ)
2πbr

dΩ =
δ0

2πb
, (33)

(1− α) p1 (ρ, θ) +
∫∫

Ω

p1 (ρ, θ)
2πbr

dΩ +
∫∫

Ω
p0 (ρ)

ρ0 cos θ0 − ρ cos θ

2πbr2
dΩ =

δ1

2πb
,

(1− α) p2 (ρ, θ) +
∫∫

Ω

p2 (ρ, θ)
2πbr

dΩ +
∫∫

Ω
p1 (ρ, θ)

ρ0 cos θ0 − ρ cos θ

2πbr2
dΩ =

δ2

2πb
.

Without the roughness α = 1, the equations (31), (33) are of the first kind, and the exact
solutions can be obtained in each approximation. For example, the first two approximations of
the pressure distribution under a flat circular punch, and under the parabolic punch taking into
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account the friction and the adhesion are obtained in [8]. We transform the equations (31), (33)
into a one-dimensional to apply the method of successive approximations. And the equation
(23) is used for the determination of p0(ρ, θ). The following equation (similar to the one above)
is obtained for the determination of p1(ρ, θ) = g(ρ)cosθ:

g(ρ0) = αg (ρ0)−
∫ b

a

K11 (ρ0, ρ) [g (ρ)− g (ρ0)]
b

dρ− g (ρ0)
b

∫ b

a
K11 (ρ0, ρ) dρ−

∫ ρ0

a

ρ g (ρ)
b · ρ0

dρ,

K11(ρ0, ρ) =





∑∞
n=1

[
(2n−1)!!
(2n)!!

]2 [
1− 1

2n+2

] (
ρ
ρ0

)2n+2
, ρ < ρ0;

∑∞
n=1

[
(2n−1)!!
(2n)!!

]2 [
1− 1

2n+2

] (
ρ0

ρ

)2n+1
, ρ > ρ0.

While applying approximate and regularization methods, the error of the change of an integral
operator by a discrete one effects the result. N. Bogolyubov and N. Krylov developed an effective
method of changing an integral equation system by algebraic equations, using the average values
of the unknown function at each partition of the integration domain. The introduction of the
difference between the values of the unknown function at different points and the subsequent
interpolation of the summands with the same indexes of the points are suggested to resolve
the singularities. We obtain the recurrent expression using one of the cubature formulas for
the numerical solution of the problem taking into account the friction and the roughness for an
arbitrary unknown contact domain [8, 9].

5. Numerical results

The surface of pressure distribution p/p∗, p∗ = Q/(2πb2) under the punch bounded by the
lines of the Booth lemniscates, ε = 0, 65, is given in fig. 1, values of the dimensionless parameters
are ε1 = 0, 057; d/b = 0, 7;α = 0, 8; a/b = 0, 35. The lines of equal pressure under the surface
show substantial asymmetry in the distribution of the normal pressure under the punch, which
increases with the value of its eccentricity.

Figure 1. The normal pressure distribution under the punch with the base bounded by the Booth lemniscates

The lines of equal pressure are closed near the points with the minimum pressure. They take
the form of curves, similar to the contours of the contact domain, closer to the boundaries.
Increasing the application height of the horizontal force leads to a greater asymmetry of the
pressure distribution that can result in lifting the punch from the surface of the elastic half-
space. A zone of the negative pressure appears at the value of d/b = 1, 6.
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Figure 2. The normal pressure distribution under the punch with the base bounded by the triangles

The surface of the pressure distribution is shown in fig. 2. Corresponding curves of equal
pressure are in fig. 3. The contact domain is bounded by the triangles. The linear friction law
is taken into account. The dimensionless parameters are a/b = 0, 3; ε1 = 0, 057; d/b = 0, 35 and
α = 0, 99.

Figure 3. Contours of equal pressure under the punch with the base bounded by the triangles

Figure 4. Contours of equal pressure under the punch with the multiply-connected base

The lines of equal pressure are concentrated near the boundaries of the contact domain. The
roughness leads to the normal pressure taking the maximum finite values at the boundaries of
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the contact domain of the flat punches. Whereas in the case of the completely smooth contact,
the normal pressure tends to infinity at the boundaries of the flat punches.

The multiply-connected contact domain of the flat punch is close to the rhomb with three
holes: two in the shape of truncated sectors, and one elliptical at the center. The equal pressure
contours are represented in fig. 4 for α = 0, 7; ε1 = 0, 057; d/b = 0, 4 .

The numerical examples show that with the increase of the half-space roughness the maximum
of the normal pressure is decreased and the minimum of the pressure is increased. This leads to
a more uniform distribution of the pressure on the contact domain.

6. Conclusions

We have developed a solution method of the integral equations with weak singularity for
contact problems with complex multiply-connected domains taking into account the roughness
and the friction. We have obtained a simple layer potential expansion when the density has no
circular symmetry. The proof has been made by the mathematical induction. The expansion
convergence has been shown and also done at the boundaries.

The proposed numerical-analytic method is based on the potential expansion, the regulariza-
tion of the first kind Fredholm equation that leads to the second kind one and smoothing the
kernels. Then the system of integral equations can be solved by numerical methods. Successive
approximations are used here.

We have developed the numerical-analytic solution for the flat punch with the doubly-connected
base in the form of the Booth lemniscates. The normal pressure distributions, the rotations an-
gles and the indentation values have been obtained and compared for different contact domains
taking into account the linear roughness and the friction. We have studied the stability of the
punch depending on the height of application of the moving force, the friction coefficient and
the punch shape. The roughness leads to the fact that the normal pressure takes the maximum
finite values at the boundaries of the contact domain of the flat punches, whereas in the case of
completely smooth contact, the normal pressure tends to infinity at the boundaries of the flat
punches.
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